2022
X. Zhang,
A. E. U. Cerna,
J. V. Stough,
Y. Chen,
B. J. Carry,
A. Alsaid,
S. Raghunath,
D. P. vanMaanen,
et al.
Generalizability and quality control of deep learning-based 2D echocardiography segmentation models in a large clinical dataset
The International Journal of Cardiovascular Imaging,
2022
URL,
DOI,
PDF,
RIS,
BibTex
2021
E.-M. Yasser,
M. Abbas,
I. Hoaglund,
A. U. Cerna,
T. B. Morland,
C. M. Haggerty,
E. S. Hall, and
B. K. Fornwalt
OASIS+: leveraging machine learning to improve the prognostic accuracy of OASIS severity score for predicting in-hospital mortality
BMC medical informatics and decision making,
21(1),
2021
PDF,
RIS,
BibTex
S. Raghunath,
J. M. Pfeifer,
A. Ulloa,
A. Nemani,
T. Carbonati,
L. Jing,
D. P. vanMaanen,
D. N. Hartzel,
et al.
Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead Electrocardiogram and Help Identify Those at Risk of AF-Related Stroke
Circulation,
2021
PDF,
RIS,
BibTex
A. Ulloa,
L. Jing,
C. W. Good,
S. Raghunath,
J. D. Suever,
C. D. Nevius,
G. J. Wehner,
D. N. Hartzel,
et al.
Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality
Nature Biomedical Engineering,
2021
PDF,
Supplementary Material,
RIS,
BibTex
A. E. Ulloa-Cerna,
L. Jing,
J. M. Pfeifer,
S. Raghunath,
J. A. Ruhl,
D. B. Rocha,
J. B. Leader,
N. Zimmerman,
et al.
rECHOmmend: an ECG-based machine-learning approach for identifying patients at high-risk of undiagnosed structural heart disease detectable by echocardiography
medRxiv,
2021
URL,
DOI,
RIS,
BibTex
2020
S. Raghunath,
A. Ulloa,
L. Jing,
J. Stough,
D. N. Hartzel,
J. B. Leader,
H. L. Kirchner,
M. C. Stumpe,
et al.
Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network
Nature medicine,
26(6),
2020
PDF,
RIS,
BibTex
L. Jing,
A. Ulloa,
C. W. Good,
N. M. Sauers,
G. Schneider,
D. N. Hartzel,
J. B. Leader,
H. L. Kirchner,
et al.
A machine learning approach to management of heart failure populations
Heart Failure,
8(7),
2020
PDF,
RIS,
BibTex
2019
J. D. Lewine,
S. Plis,
A. Ulloa,
C. Williams,
M. Spitz,
J. Foley,
K. Paulson,
J. Davis,
et al.
Quantitative EEG Biomarkers for Mild Traumatic Brain Injury
Journal of Clinical Neurophysiology,
36(4),
2019
PDF,
RIS,
BibTex
2018
M. D. Samad,
A. Ulloa,
G. J. Wehner,
L. Jing,
D. Hartzel,
C. W. Good,
B. A. Williams,
C. M. Haggerty,
et al.
Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning
JACC: Cardiovascular Imaging,
2018
PDF,
RIS,
BibTex
2017
A. Basile,
A. Ulloa,
A. Lucas,
A. Frase,
V. Abedi,
M. Ritchie,
H. L. Kirchner,
C. Manney,
et al.
Using a simulation approach to evaluate data-driven algorithms for studying clinical heterogeneity in complex traits
TBC,
2017
PDF,
RIS,
BibTex
2016
2015
2014
V. M. Vergara,
A. Ulloa,
V. D. Calhoun,
D. Boutte,
J. Chen, and
J. Liu
A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function
Neuroimage,
98,
2014
PDF,
RIS,
BibTex
2013
2012
2010
2009